

TP 1 – Les minéraux et leur determination dans les roches

UNIL | Université de Lausanne

Une roche est composée de plusieurs minéraux.

Monominérale

Ex : quartzite = 100% de quartz

Polyminérale

Ex : granite = quartz + feldspath + mica

Une roche est composée de plusieurs minéraux.

Un seul minéral, donc pas une roche.

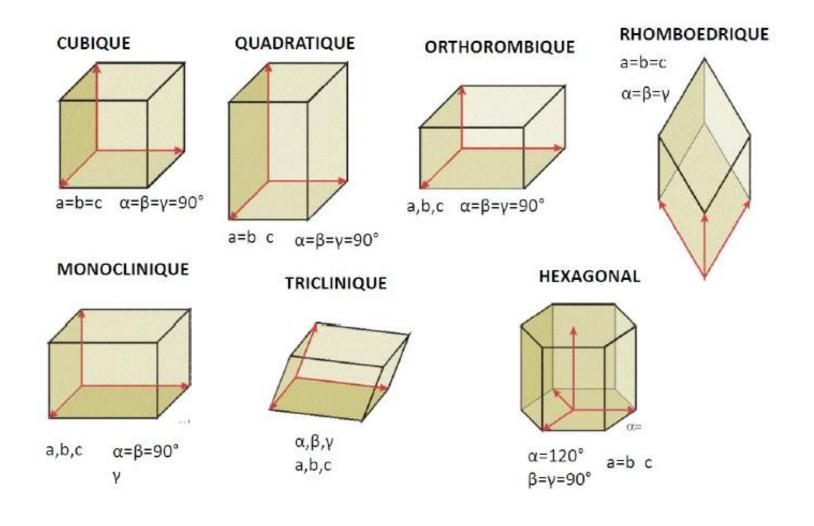
Un minéral est défini par une formule chimique et un système cristallin.

Diamant: C

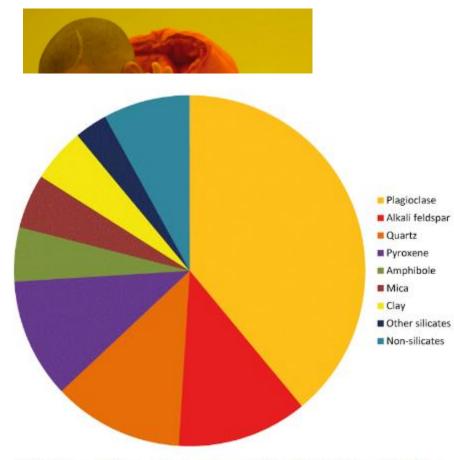
Pyrite : Fe₂S

Grenat: (Ca,Mg,Mn,Fe)₃Al₂Si₄O₁₂

Un minéral est défini par une formule chimique et un système cristallin.



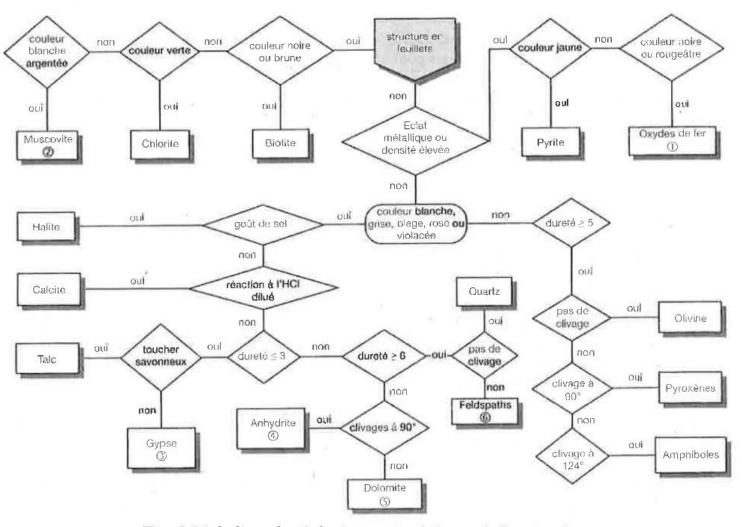
Andalousite : Al₂SiO₅ Orthorombique


Il existe 7 systèmes cristallins.

Objectif : apprendre à identifier un minéral

La mauvaise nouvelle : Il existe plus de 4000 variétés de minéraux dans la nature

La bonne nouvelle : seulement une douzaine de minéraux sont les plus abondants


Minéraux les plus courants dans la croutes

Objectif : apprendre à identifier un minéral

Trop de minéraux avec trop de caractéristiques → trop de boulot à apprendre par cœur

Objectif = savoir reconnaitre les caractéristiques d'un minéral pour ensuite utiliser une grille de classification.

(Fig. 5.34 du livre de géologie pour ingénieurs, A. Parriaux)

A quoi ça peut me servir d'identifier un minéral ???

A quoi ça peut me servir d'identifier un minéral ???

Roche = assemblage de minéraux

→ identification des minéraux permet d'identifier les roches

A quoi ça peut me servir d'identifier un minéral ???

Roche = assemblage de minéraux

→ identification des minéraux permet d'identifier les roches

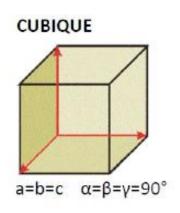
Important pour :

- Tous les aspects géotechniques
- Pour la circulation des fluides dans le sol (hydrogéologie)
- Reconnaitre des gisements
- Eviter certaines pollutions (ex : sulfurs)
- Identifier des risques pour la santé (ex : amiante)

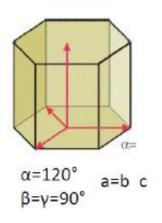
Un minéral est caractérisé par ses propriétés physiques et chimiques.

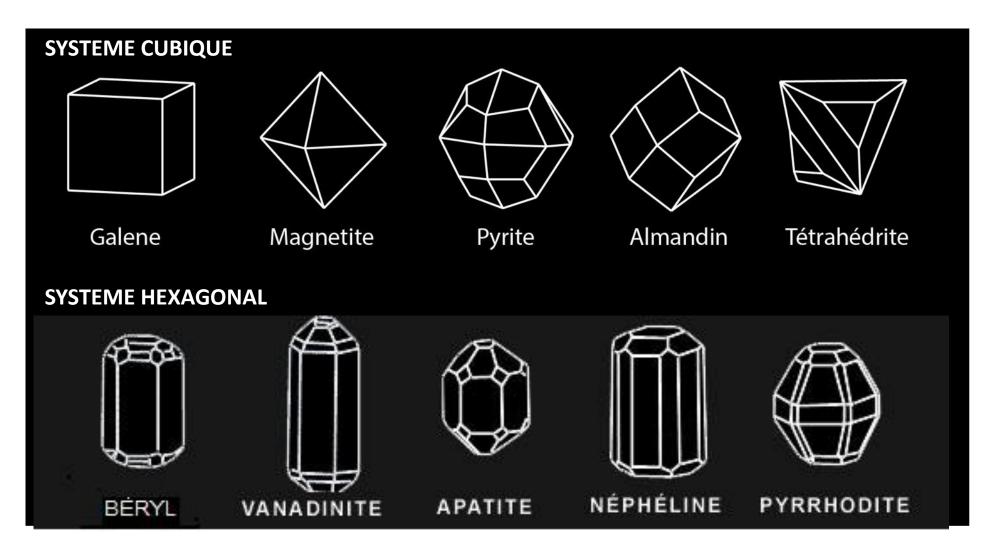
- Propriétés physiques des minéraux:
 - Forme cristalline
 - Couleur
 - Dureté
 - Magnétisme
 - Photoluminescence
- Propriétés chimiques des minéraux :
 - Composition chimique
 - Solubilité
 - Effervescence

- Radioactivité
- Ténacité
- Densité
- Éclat
- Transparence
- Clivage
- Cassure
- Trace ou trait
- · Conductivité électrique


Un minéral est caractérisé par ses propriétés physiques et chimiques.

- Propriétés physiques des minéraux:
 - Forme cristalline
 - Couleur
 - Dureté
 - Magnétisme
 - Photoluminescence
- Propriétés chimiques des minéraux :
 - Composition chimique
 - Solubilité
 - Effervescence

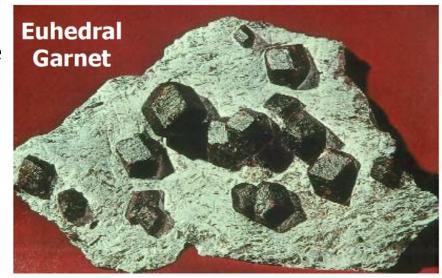

- Radioactivité
- Ténacité
- Densité
- Éclat
- Transparence
- Clivage
- Cassure
- Trace ou trait
- Conductivité électrique


Forme cristalline

formes cristallines associés à chacun des systèmes cristallins de base

Forme cristalline

formes cristallines associés à chacun des systèmes cristallins de base


Mais mais mais:

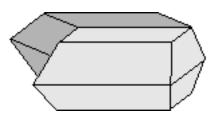
Est-ce que le minéral a pu développer sa forme propre?

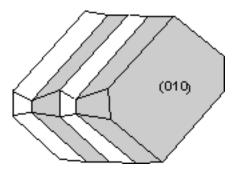
→ Automorphe (ou euhedral)

Est-ce que le minéral ne présente pas de faces bien développées?

→ Xénomorphe (ou anhedral)

Plagioclase xenomorphe


Quartz xenomorphe

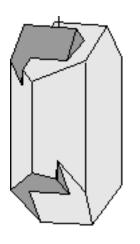

Forme cristalline, les macles

- → association orientée de 2 ou plusieurs cristaux identiques
- → Reliés par une opération de symétrie (e.g. rotation, réflexion)

Accolement le long d'une surface cristalline

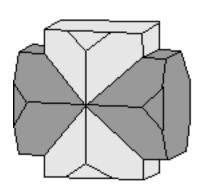
Fer de lance

polysynthétique



Plagioclase

Forme cristalline, les macles


Interpénétration

Macle Carlsbad du Feldspath alcalin

Macle en croix de la staurotide

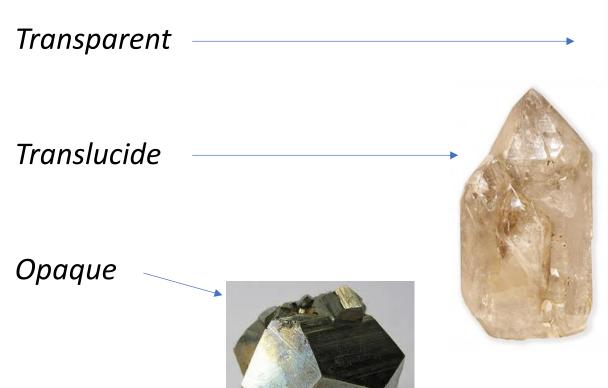
Pyrite non maclée

Couleur

Peut-être induite par la composition chimique du minéral (idiochromatique) Ou bien par des impuretés (allochromatique)

Si un minéral n'a pas de couleur, il est achromatique.

MnCO₃


 $Cu_2CO_3(OH)_2$

RHODOCHROSITE

MALACHITE

Transparence

Capacité d'un minéral à laisser passer la lumière

Eclat

métallique

Mat/ pierreux

vitreux

nacré

adamantin

Trace

Trace laissée par le minéral sur un morceaux de porcelaine non polie

Dureté

Déterminé par sa résistance à se faire rayer

1	Talc, friable sous l'ongle		
2	Gypse, rayable avec l'ongle		
3	Calcite, rayable avec une pièce cuivrée		
4	Fluorite, rayable au couteau		
5	Apatite, rayable au couteau		
6	Orthose, rayable à la lime, par le sable		
7	Quartz, qui raye une vitre		
8	Topaze, rayable par le carbure de tungstèn		
9	Corindon, rayable au carbure de silicium		
10	Diamant, rayable avec un autre diamant		

Echelle de Mohs

→ échelle de dureté relative

rès t	tend	re	

assez dur

assez tendre

Dureté approximative

Plaque de verre: 5.5-6.5

Couteau en acier : 5.5

très dur Ongle : 2.5

Dureté

Déterminé par sa résistance à se faire rayer

1	Talc, friable sous l'ongle		
2	Gypse, rayable avec l'ongle		
3	Calcite, rayable avec une pièce cuivrée		
4	Fluorite, rayable au couteau		
5	Apatite, rayable au couteau		
6	Orthose, rayable à la lime, par le sable		
7	Quartz, qui raye une vitre		
8	Topaze, rayable par le carbure de tungstène		
9	Corindon, rayable au carbure de silicium		
10	Diamant, rayable avec un autre diamant		

Echelle de Mohs

→ échelle de dureté relative

très tendre

assez dur

assez tendre

Dureté approximative

Plaque de verre: 5.5-6.5

Couteau en acier : 5.5

très dur Ongle : 2.5

A ne pas confondre avec la **ténacité** : capacité d'une pierre à **résister à la pression et aux chocs**

Clivage

- plan de rupture privilégié à l'intérieur d'un minéral
- → dépend de la structure cristallographique

EXCELLENT

le minéral se clive en fine lamelle dans un sens

PARFAIT

le minéral se clive en forme régulière délimitée par les plans de clivage

BON

les plans de clivage sont moins visible et pas toujours parfaitement droits

IMPARFAIT

le clivage ne se manifeste pas nettement, les plans de séparation ont généralement une surface inégale

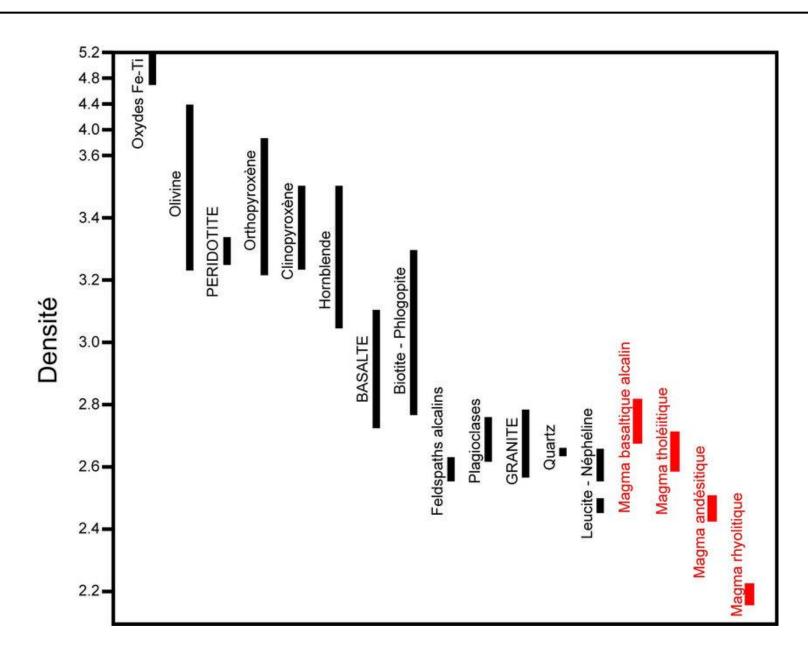
TRES IMPARFAIT

le clivage ne se manifeste pas

www.aquaportail.com

hornblende

calcite


Cassure

Ne pas confondre clivage et cassure. Les clivages sont planaires, parallèles et réguliers. Les cassures peuvent prendre des formes variées sont aléatoirement réparties dans le minéral.

Certaines cassures sont caractéristiques pour certains minéraux, comme les cassures conchoïdales dans le quartz ou l'obsidienne.

Densité

Effervescence

Reaction à l'HCl – Détermination de la calcite

La réaction entre la calcite et l'HCl produit un dégagement de CO₂ facilement détectable.

Cela est un test très facile pour détecter la présence de ce minéral abondant à la surface du globe

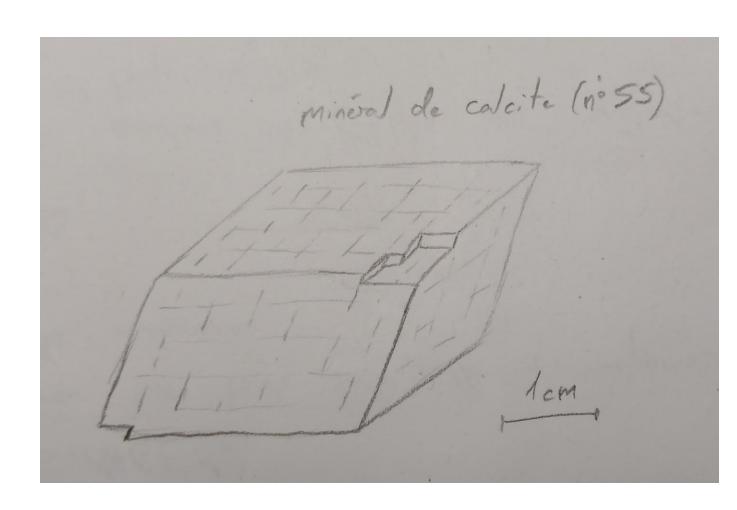
Réaction:

 $CaCO_3 + HCl \rightarrow CaCl_2 + CO_2 + H_2O$

(Remarque: la dolomite, $CaMg(CO_3)_2$, réagit également, mais uniquement si l'on réduit le minéral en poudre, ce qui augmente la surface de réaction)

Travail à réaliser

- Choisir deux minéraux, dont un silicaté, dans la collection de minéraux à disposition
- Remplir le tableau de description du minéral sans oublier de noter le nom du minéral dans la case correspondante
- Faire un dessin du minéral montrant ces caractéristiques spécifiques (macles, clivages, etc.)


Décrire deux minéraux appartenant à la collection à disposition – un des minéral doit être un silicate . Pour cette description, utiliser la liste de paramètres ci-dessous, sachant que tous les Nom du Minéral 1: Forme du minéral/habit Couleur/color: Transparence/transparency: Eclat/luster: Macle/twinning: Clivage(s)/cleavage Dureté/hardness : Réaction à l'acide (HCI) Réaliser un schéma annoté présentant les caractéristiques spécifiques du minéral

Travail à réaliser

Un dessin d'observation doit contenir :

- titre (avec le nom et numéro du minéral)
- échelle
- les caractéristiques principales de chaque minéral observable (forme, macles, clivages, ...)

Pas de trait à la règle.

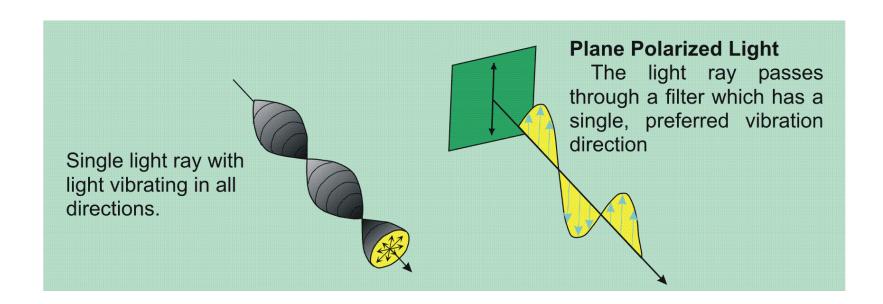
Problème

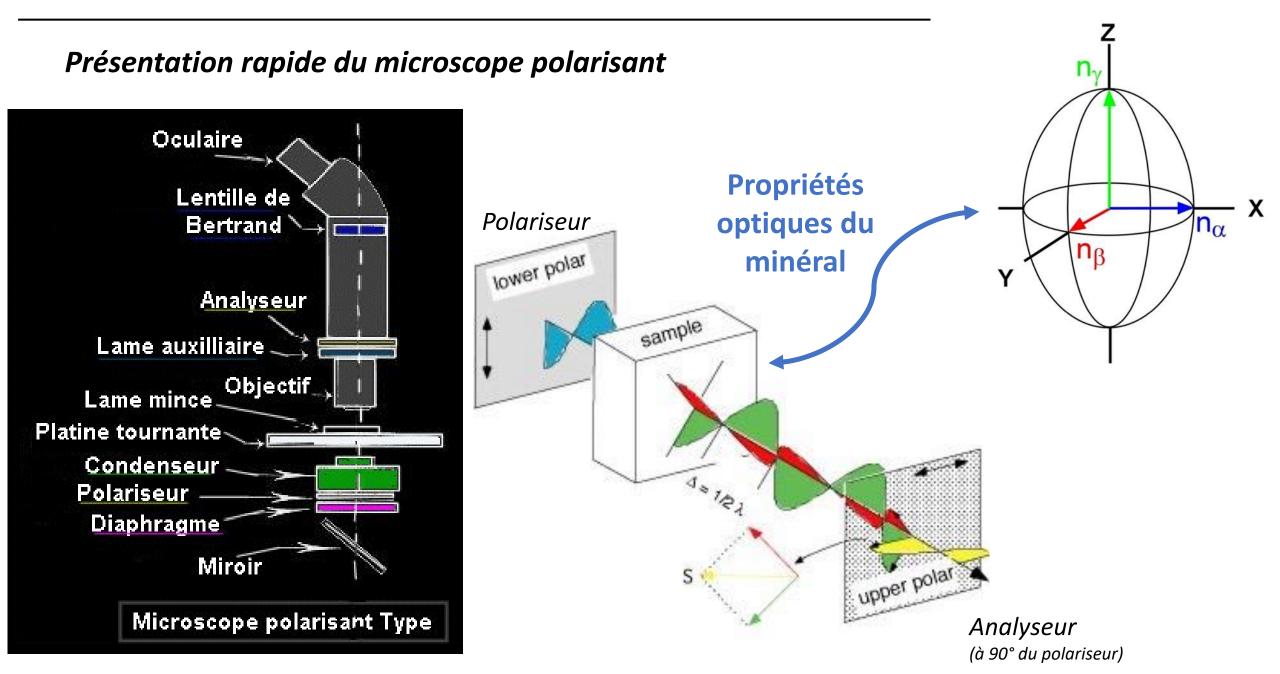
Les minéraux ne présentent que rarement des formes qui permettent de déterminer l'ensemble de leurs propriétés sous forme macroscopique

Cristaux de quartz qualité Gem

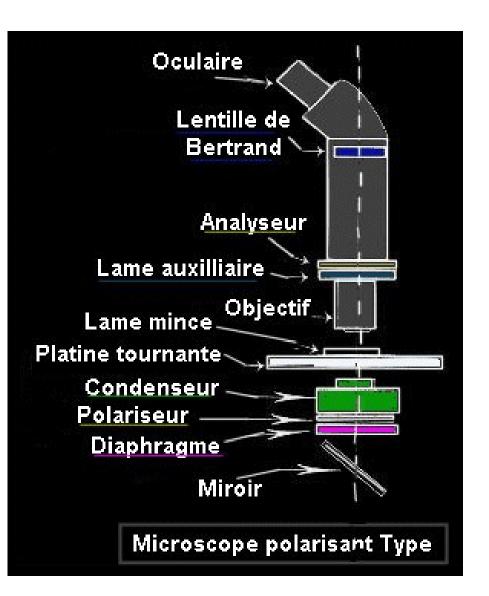
Quartz dans un gneiss en association avec des feldspaths alcalins, du plagioclase et des micas noirs (biotite)

→ Détermination des minéraux en lames minces





Présentation rapide du microscope polarisant


La lumière naturelle vibre dans toutes les directions perpendiculaires à la direction de propagation.

Si la vibration est limitée à un seul plan, la lumière est dite polarisée et la vibration peut être représentée par une onde simple ("PPL = plane polarized light" en anglais)

Présentation rapide du microscope polarisant

1 polarisateur = Lumière Polarisé Non Analysée (LPNA)

(ou lumière naturelle)

2 polarisateurs = Lumière Polarisé Analysée (LPA)

(ou lumière analysée)

Observations au microscope

LPNA

- Forme
- Couleur et pléochroïsme
- Clivage
- Relief
- •

LPA

- Teintes de polarisation
- Extinction
- Macles
- ...

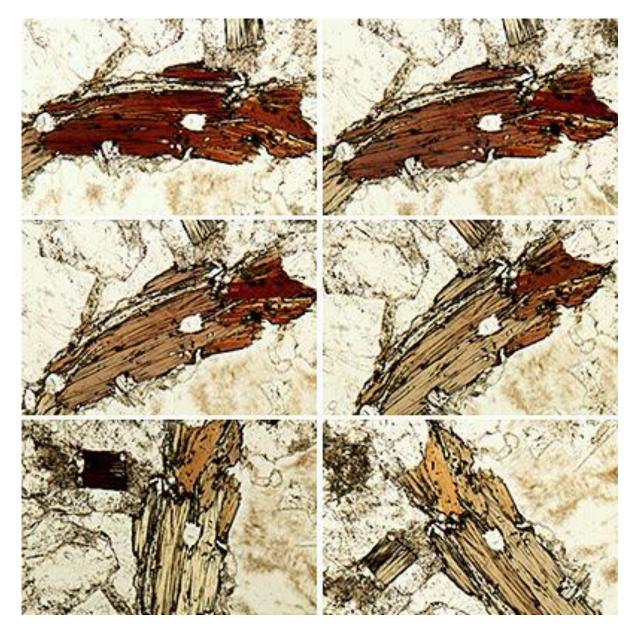
Observations au microscope

LPNA

- Forme
- Couleur et pléochroïsme
- Clivage
- Relief
- •

LPA

- Teintes de polarisation
- Extinction
- Macles
- •

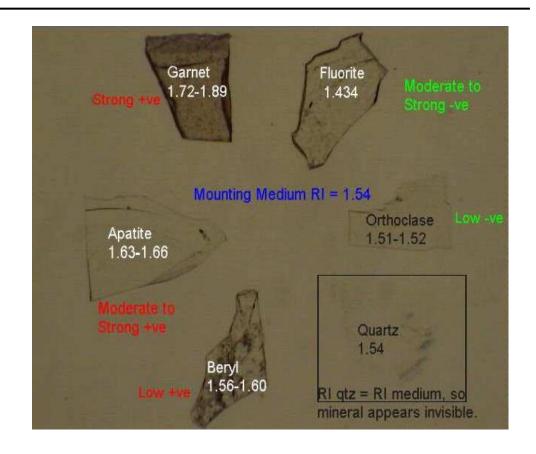

Pléochroïsme (LPNA)

Changement de couleur lorsque l'on tourne la platine entre deux teintes extrêmes.

- description de la couleur par rapport à l'orientation du grain et du polariseur,
- degré du changement de couleur : pléochroïsme faible, moyen, fort.

Exemple : ce minéral

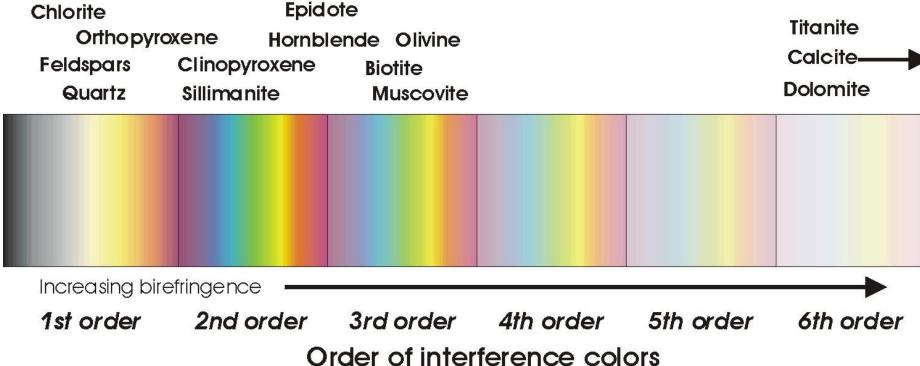
- est brun foncé quand les clivages sont parallèles au polariseur et
- brun pâle quand il est orienté perpendiculairement au polariseur.



Relief (LPNA)

Correspond à l'épaisseur des contours du minéral.

Dépend de l'indice de réfraction.

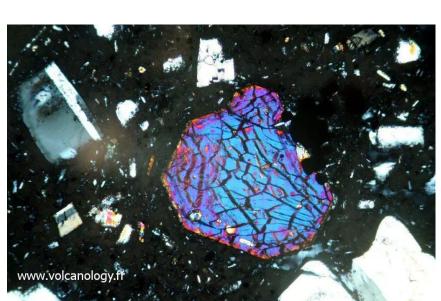


Polariseur

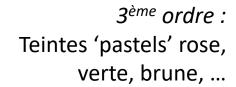
Teintes de polarisation (LPA)

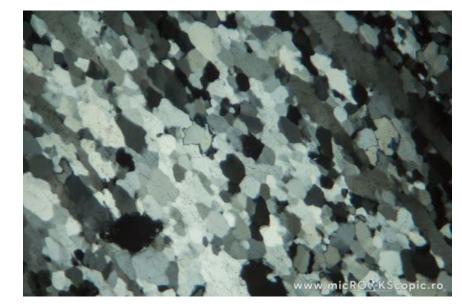
Dépend de la différence de vitesse de propagation de la lumière en fonction des axes optiques du minéral, ce qui dépend du système cristallin et de l'orientation du minéral.

Interference Colors and Birefringence



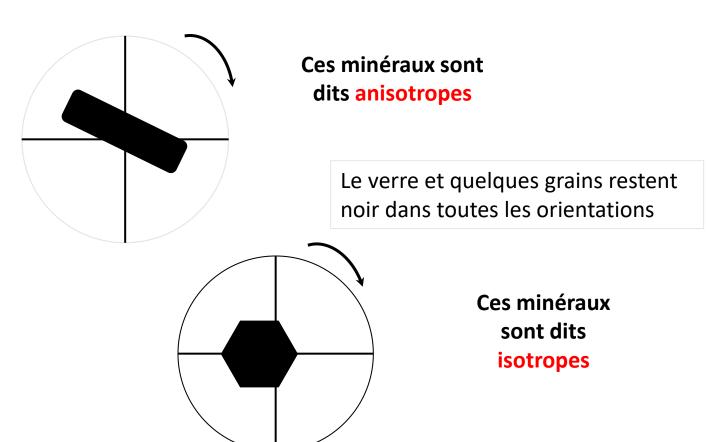
lower polar sample upper polar Analyseur


(à 90° du polariseur)

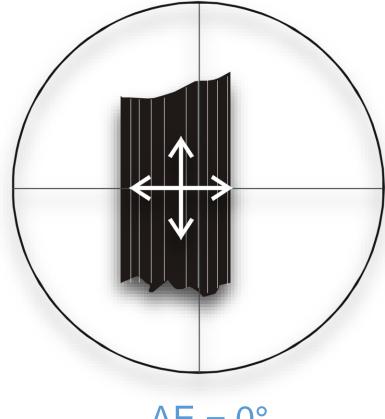

Teintes de polarisation (LPA)

1^{er} ordre:Teintes blanche, grises, noires, jaune pâle, ...

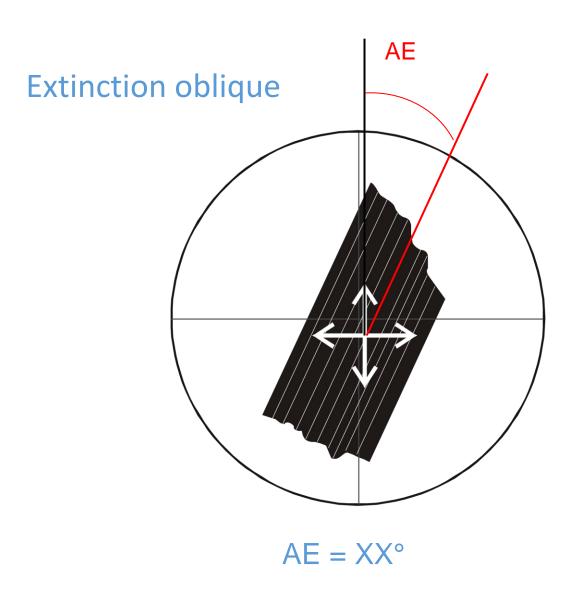
2ème ordre : Teintes vives bleu, jaune, rouge, verte, ...



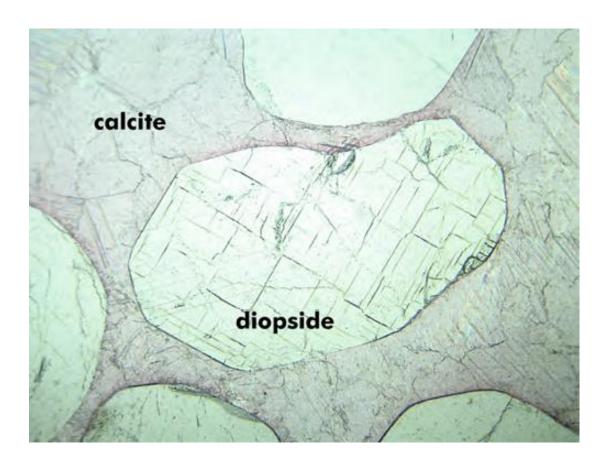
Exctinction


Lorsqu'on utilise la platine tournante :

La plupart des grains change de teinte quand la platine tourne; ces grains deviennent noir 4 fois lors d'une rotation de 360° tous les 90°

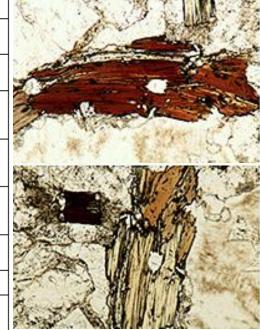


Extinction


Extinction droite

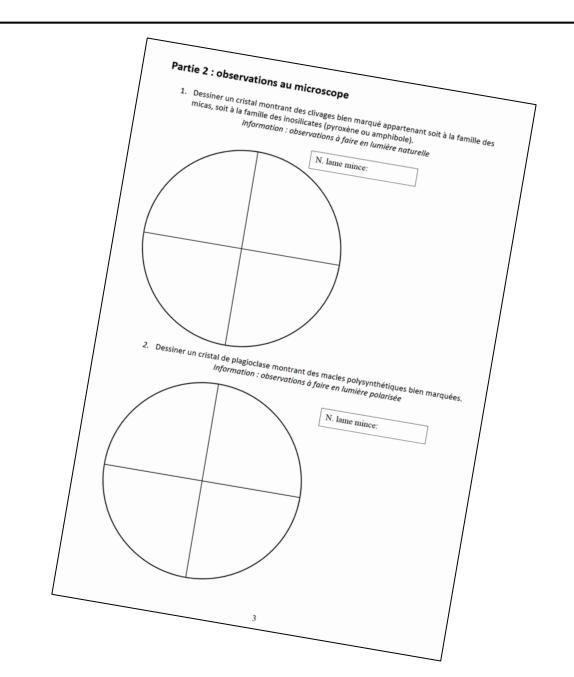


Les macles et clivages



Section de diopside (pyroxène) montrant la trace de deux clivages à 90° (LPNA)

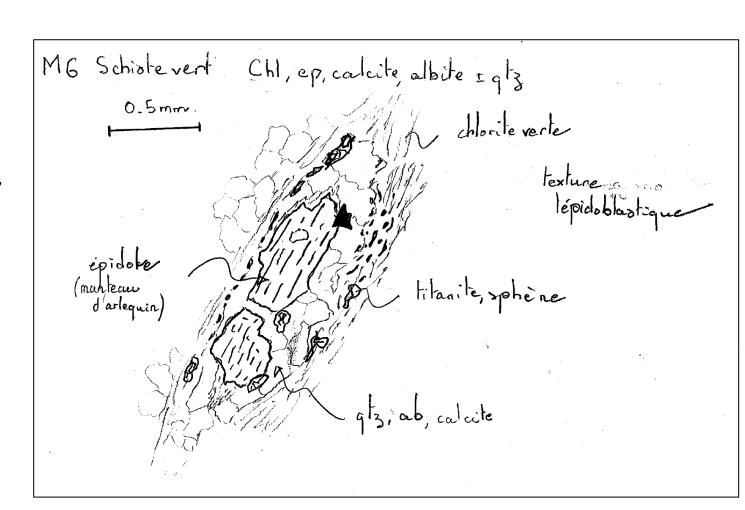
Macles polysynthétiques dans des cristaux de plagioclase (LPA)


	LUMIERE POLARISEE NON ANALYSEE					LUMIERE POLARISEE ANALYSEE		
MINERAL	FORME	RELIEF	COULEUR ET PLEOCHROISME	ALTERATION INCLUSION	CLIVAGE	TEINTES DE POLARISATION	EXTINCTION	MACLE
CHLORITE	Tablette ou fibres en rosette	Faible 1.54-1.58	Faible, incolore à vert pléochroïque (vert : Fe, incolore : Mg)	Oxydes de fer dans les clivages	Un clivage (sections parallèles)	Teintes sombres du début du 1 ^{er} ordre 0.00-0.009	Droite	Non
EPIDOTES (dont zoïsite)	Prisme ou fibre	Fort 1.70-1.80	Incolore à jaune parfois pléochroïque		Un clivage net (sections parallèles)	Variables (bleu, gris, jaune) "manteau d'arlequin" 0.015-0.051	Variable	Non
ACTINOTE (amphibole verte)	Baguette, tabulaire	Moyen 1.62-1.70	Incolore à vert pale pléochroïque (faible)		Deux clivages (±120°)	Vert du 2 ^{ième} ordre 0.016-0.024	Oblique 11-17° (section longitudinale)	Fréquentes
HORNBLENDE (amphibole verte à brune)	Prisme ou aiguille	Moyen 1.64-1.71	Incolore, verte ou brune pléochroïque	Altération en chlorite, épidote, calcite etc	Deux clivages (±120°) sur les sections transversales	Fin du 1 ^{er} ordre et début du 2 ^{ème} 0.014-0.026	Oblique 15-27° (section longitudinale)	rare
GLAUCOPHANE (amphibole bleue)	Prisme ou aiguille	Moyen 1.61-1.67	Incolore à bleu pléochroïque		Deux clivages (±120°) sur les sections transversales	1° ordre à début 2 ^{ième} ordre 0.013-0.021	Oblique 3-7° (section longitudinale)	Non
PYROXENE (ortho et clino)	Prisme	Moyen 1.68-1.69	Incolore, à légèrement pléochroïque rose pâle, brun pâle	Exsolution fréquente	Deux clivages (±90°) sur les sections transversales	Cpx : 2 ^{ibme} ordre 0.020-0.025 Opx : 1 ^{er} ordre 0.008-0.009	Cpx : Oblique Opx : droite (section longitudinale) ou oblique (section basale)	Cpx : Fréquentes Opx : non
OLIVINE	Xénomorphes, rarement prismatique	Très fort	Incolore	Souvent fracturé, altération brunâtre (iddingsite)	Non (très rarement visible)	2 ^{ième} ordre 0.035-0.052	Droite (section longitudinale) ou oblique (section basale)	Non
MUSCOVITE	Tabulaire	Moyen 1 55-1 62	Incolore, limpide		Un clivage net	Vives du 2 ^{ième} ordre 0.035-0.055	Droite	Non
ВІОТІТЕ	Tabulaire	Moyen 1.56-1.65	Brun pléochroïque	Inclusions fréquentes (zircon, apatite)	Un clivage net	Vives du 2 ^{ième} ordre 0.040-0.055	Droite	Non
GRENAT	Globuleux	Très fort 1.7-2.0	Incolore	Craquelures	Non	Éteint (isotrope)	Éteint (isotrope)	Non
STAUROTIDE	Prisme automorphe	Fort 1.74-1.76	Jaune pléochroïque	Fréquemment altéré en mica	Peu visible	Jaune du 1 ^{er} ordre 0.012-0.015	Droite (section longitudinale)	Non
DISTHENE (KYANITE)	Prismatique allongé ou aplati	Fort 1.72-1.73	Incolore		Deux clivages à 74° (sections perpendiculaires)	Jaune fin 1 ^{er} ordre 0.012-0.016	Oblique 0 à 30°	rare
SILLIMANITE	Prisme allongé ou fibre en rosette	Fort 1.66-68	Incolore		Un clivage net (sections perpendiculaires)	Teintes du début du 2 ^{ième} ordre 0.020-0.023	Droite (section longitudinale)	Non
ANDALOUSITE	Prisme automorphe	Moyen 1.63-1.64	Incolore parfois pléochroïque dans les roses	Inclusions charbonneuses (chiastolite)	Deux clivages à 90° (sections perpendiculaires)	Gris blanc, jaune fin 1er ordre 0.009-0.011	Droite (section longitudinale)	Non
CORDIERITE	Xénomorphes globuleuses ou poecilitiques	Faible 1.53-1.57	Incolore à coloration bleutée (fraîche) ou brun- jaunâtre (altérée) pléochroïque	Auréole pléochroïque jaune autour des zircons	Clivages possibles mais rares	Blanc à jaune du 1 ^{er} ordre 0.009-0.016	Non déterminable	Polysynthétiques biseautées et répétées à 120°.

Forme tabulaire
Relief moyen/fort
1 clivage bien visible
Couleur brune et
pléochroïsme

Travail à réaliser

- Observer les différentes lames à disposition et identifier les 4 minéraux principaux (sans les nommer)
- Faire un dessin d'une section de minéral montrant un ou des clivages
- Faire un second dessin montrant un cristal de feldspath caractérisé par la présence de macles polysynthétiques



Travail à réaliser

Dessin d'observation doit contenir :

- titre (avec le nom de la lame mince et de la roche)
- échelle et le grossissement de l'objectif
- les caractéristiques principales de chaque minéral observable (reliefs, macles, clivages, inclusions, ...)
- la texture et la structure de la roche

Attention à ne pas laisser de « vide » entre vos minéraux.

Objectif d'identification des minéraux → identifier les roches

Magmatiques

Sédimentaires

Métamorphiques

Magmatiques

Roches issues d'un magma

Refroidissement lent (en profondeur)

Refroidissement rapide (en surface)

Roches

Roches plutoniques

Les minéraux ont le temps de cristalliser

→ minéraux macroscopiques, pas de matrice entre eux

volcaniques

Les minéraux n'ont pas le temps de cristalliser → qq minéraux macroscopiques, matrice entre eux Bcp de vacuoles

Sédimentaires

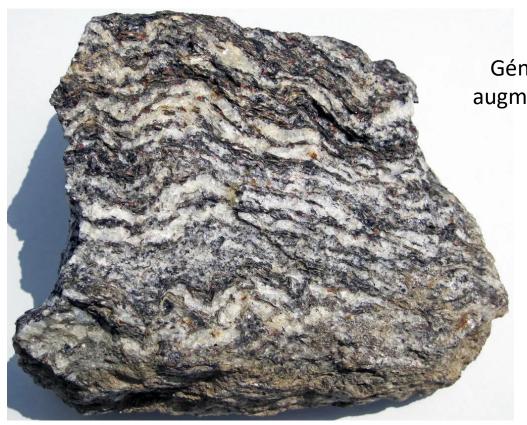
Roches issues de sédiments

Morceaux de reliefs érodés (clasts) Précipitation d'une solution chimique

Roches détritiques

Bcp de quartz et d'argiles

Bcp de calcite ou de sels

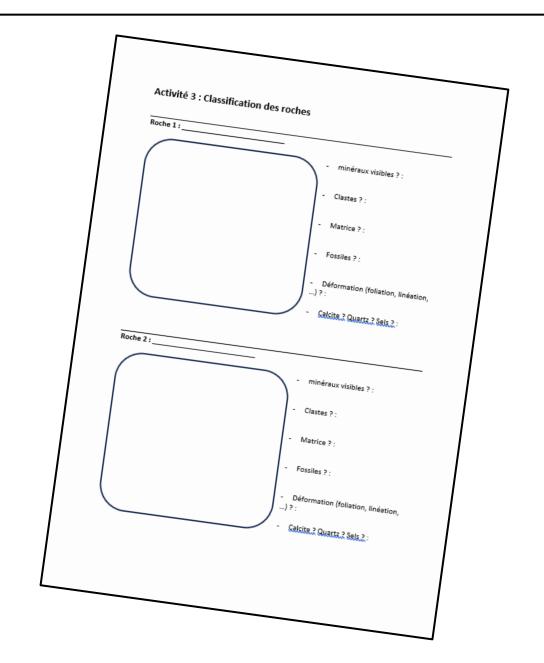

Métamorphiques

Roches issues de la recristallisation d'une ancienne roche

Généralement induit par une augmentation de la temperature et/ou de la pression

Riches en mnx métamorphiques (grenat, sillimanite, staurotide, etc ...)

Souvent déformés (foliations, linéations et plis)



Travail à réaliser

Décrire et dessiner les 4 roches devant vous.

Sur la base de vos observations, proposer à quel type de roche elles appartiennent.

